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Abstract. The problem of maximizing the sum of certain composite functions, where each term is the 
composition of a convex decreasing function, bounded from below, with a convex function having 
compact level sets arises in certain single facility location problems with gauge distance functions. We 
show that this problem is equivalent to a convex maximization problem over a compact convex set and 
develop a specialized polyhedral annexation procedure to find a global solution for the case when the 
inside function is a polyhedral norm. As the problem was solved recently only for local solutions, this 
paper offers an algorithm for finding a global solution. Implementation and testing are not treated in 
this short communication. 
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1. Introduction 

In a recent paper, Idrissi et al. [5] consider the following class of global 
optimization problems (for the case m = 2) 

07 

under the assumptions that: (Al) qi is a strictly convex function, strictly decreas- 
ing on R,, with values in R,, for which lim,,,qj(t) = 0 for all j; and (A2) hj is a 
convex function defined on R”, with values in R,, such that limI+mhj(X) = +m 
for all j, where ] . ] denotes an arbitrary norm. 

The objective function p(x) := CqZ1 qj[hj(x)] is g enerally neither convex nor 
concave. In [S], a method that computes only a local (instead of global) maximum 
is proposed. The aim of this paper is to present a method for finding a globd 
maximum. The method reduces to solving a sequence of unconstrained convex 
minimization problems of the form B 
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for aj 3 0. The method is a specialization of the polyhedral annexation procedure 
earlier developed in [S] (see also [4]). The utilization of the general procedure 
herein demonstrates the value and versatility of polyhedral annexation ap- 
proaches. 

As noted in [5], for the case m = 2, problem (P) arises in certain single facility 
location problems. Specifically, consider the problem of locating a “desirable” 
facility (such as community center or branch library) which is designed to serve IZ 
districts of a town or region. District j has a population located at aj E R*, 
j=l,..., n, which can be interpreted as the population center of mass. Let 
x E R2 denote the location of the desirable facility and take h,(x) = IX - ai1 as the 
distance function from x to district j using an arbitrary polyhedral norm 1 . 1 (see, 
e.g., [7]). Then qj((x - ail) measures the attraction of the district j population to 
the desirable facility when it is located at X. According to assumption (Al), the 
farther x is away from aj the less attractive it looks to the district j population. 
Assumption (A2) formalizes the property that customers from district j must 
travel an infinite distance to a new facility that is located infinitely far away from 
the origin. Thus, problem (P) is to determine the optimal location x E R2 that 
maximizes the total attraction. 

In general, a different norm can be associated with each district. When the 
distance measures between points are not symmetric (this occurs when there are 
one-way streets, for example) then gauges can be used for hj instead of norms. 

Problem (P) is more difficult than the familiar Fermat-Weber problem with 
nonlinear costs [2] where the objective is to minimize and the “cost” functions 
qj : R, + R, are assumed to be strictly increasing and convex such that qj(0) = 0. 
Note that the Fermat-Weber problem is to minimize a convex function of a 
distance measure while problem (P) maximizes a convex function of the same 
measure. In fact, we show in Section 2 that problem (P) is equivalent to a convex 
maximization problem. 

Idrissi et al. [5] develop a procedure based on solving a sequence of parame- 
terized Fermat-Weber problems for finding only a local solution of problem (P). 
As in the more general case treated in [2], all local solutions of problem (P) are 
among the infersection points of the polyhedral norm. These points can be very 
easily characterized as follows. Let {u’, u2, . . . , U”J} denote the vertices of the 
“unit ball” in R2 associated with the polyhedral norm of district j. For each aj, 
j=l,..., n, draw the sj half-lines emanating from uj through ui for all i = 
1 . . > sj. An intersection point is where two noncollinear half lines, emanating 
from uk and a, (k, I = 1, . . . , n), cross. It is easy to see that there are finitely 
many intersection points and that R* is thus partitioned into finitely many 
polyhedra each having vertices defined by intersection points and set directions 
defined by the half-lines constructed above. The polyhedra are called elementary 
polyhedra [7] ( see Figure 1). It is demonstrated in [5] that the objective function 
of (P) is convex on every elementary polyhedron; thus, the problem can be 
viewed as that of maximizing a piecewise convex function when R2 is tiled by 
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Fig. 1. Intersection points of polyhedral norms and elementary polyhedra. 

elementary polyhedra. The algorithm in [5] effectively uses a parameterized 
partial linearization of the objective to achieve linearity over each elementary 
polyhedron which gives rise to a Fermat-Weber problem that is solved for 
successively updated settings of a fixed parameter vector. Only improving vertices 
of elementary polyhedra are generated until a local solution is encountered. 

In contrast, our general approach is based on our observation in Section 2 that 
problem (P) can be reformulated as a constrained convex maximization problem 
which is a “classical” problem in global optimization. Consequently, our approach 
does not break down for m > 3 as does the algorithm in [5]. Also, we simply 
assume the convexity instead of strict convexity of qj(t). We employ an existing 
algorithm based on successively enlarging polyhedra and specialize this procedure 
in Section 3 to the problem at hand. In Section 4 we prove that every limit point 
of our algorithm is a global solution to problem (P). The closing Section 5 
discusses some implementation considerations and techniques for computing 
certain quantities required by the algorithm. The treatment in the remainder of 
the paper assumes a basic knowledge of the fundamental techniques in determinis- 
tic global optimization, as detailed in [4]. 

2. Basic Properties 

In this section we first prove that problem (P) is equivalent to a constrained 
convex maximization problem that can be solved by an existing polyhedral 
annexation procedure. When this procedure is specialized to our problem, we 
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show that it reduces to solving a sequence of unconstrained convex minimization 
subproblems. 

PROPOSITION 1 (see [5], Proposition 2.1). Let q(x) = CyZ1 q,[hj(x)]. Then p(x) 
has a global maximizer on R”. In particular the function p(x) is bounded on R”. 

PROPOSITION 2. If X solves (I’) then (X, 0 with t= h(x) solves the convex 
maximization problem 

nmp 
1 
,z qj(tj): hi(x) G tj( j = 1, . . . , n), (x, t) E Rm’n} . (Q) 

Conversely, if (X, i) solves (Q) then X solves (I’). 
Proof. If (x, t) satisfies h(x) d t and C;=r qj(tj) > Cy=r qj[h,(X)] then 

CTZ1 qj[hj(x)]S CyZ1 qi(tj)>C~=, q,[h,(x)]. This proves the first assertion. To 
prove the second assertion, observe that if Cy=r qj[hi(x)] > CyZ1 qi[hj(x)] then for 
t = h(x) we would have 

I!? Qj(tj) = l$ qj[hj(x)l>,$ qj[hj(‘>l s ,$ qj(() . 
j=l 

17 

Thus the problem is a convex maximization problem which can be solved by a 
general purpose global optimization method (see [S]). We exploit the special 
structure of the problem to obtain a more efficient streamlined version of this 
procedure. 

Denote 

D={tER::h(x)Stfor somexER”} 

where h : R” + RT. Then problem (Q) can be rewritten as 

yg f(t) 9 ce> 

Let ? be the best feasible solution of (0) known at a certain stage. The core of 
our method is a procedure for solving the following subproblem: 

(Q, t): Determine whetherf(t) of f or all t E D (i.e., tis globally optimal) and 
if not, find a feasible solution t’ such that f(t’) >f(?). 

Let to E fi be such that f(P) <f(t). Denote y =f(?), C = {t E R” : f(t) s r}, 
D = fi - to and C = C - to. Then the set C is convex, closed, 0 E D n intC and 
(6, t) can be reformulated as: 

(0, t): Determine whether D C C and if not find a point in the difference D\C. 
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For solving this problem, we observe the following properties of C and D. 

PROPOSITION 3. C contains the orthant R:. 
Proof. For any t E R: we have f(t” + t) s f(f) be_cause each q,(. ) is strictly 

decreasing on R + . Hencef(t”+ t)sy; i.e., to+ tE C or tE C. q 

PROPOSITION 4. For any vector s E R”+ we have 

2; g s,tj = min 2 s,h,(x) . 
/ xER” i=r 

Proof. Obvious from (1) and the fact s E R:. 0 

It turns out that, due to these properties, the polyhedral annexation procedure in 
[8] specialized to problem (0, r), will reduce to solving a sequence of uncon- 
strained convex minimization subproblems. We show this in the next section. An 
example is presented first to illustrate the main constructions in our procedure. 

EXAMPLE As in [5], consider the attraction function for district j given by 
qj(tj) = ajojemP” h 1 J w ere a; is the average fraction of the population of size wi that 
frequents the center. Small values of the parameter pi 2 1 magnify the importance 
of district j’s proximity to the center. 

Let the distance from x to district j be h,(x) = Ix - ai\, where ( . ] is any given 
norm. By Proposition 2, problem (P) for this example is equivalent to 

s.t.(x-uj]<tj (j=l,..., n). 

The variable x in this problem, as in problem (Q) in the general case, only plays 
an intermediate role. Therefore, it is possible and more efficient to solve it as a 
problem in the variables tj( j = 1, . . . , n) only; i.e., as a problem in R” rather than 
R” x R”. In the next section we wiil show that this can be done via a dualization 
procedure. 

3. Solution Method 

Let C* and D* denote the polars of C and D, respectively. From general 
properties of polars, we have D C C if and only if C* C D*. We now consider 
how to check C* C D*. 

From Proposition 3 it follows that C* C RY , and from 0 E intC it follows that 
C* is compact (see, e.g., [6]). 

Now consider a polytope S such that C” C S C R”. We are interested in 
knowing whether S C D*, because if this holds then a fortiori C* C D*. 
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PROPOSITION 5. Let V be the vertex set of S. We have S C D* if and only ij 

max 
1 
z vjtj : t E D} d 1 for all v E V . (2) 

Proof. Since D* is convex, we have S C D* if and only if V C D*. But from 
the definition of polars, v E D* if and only if (2) holds. q 

Thus, to check whether or not S C D *, we solve the subproblem 
max{C~=, vjtj : t E D} for each v E V. Setting s = -v, we have s E R: (because 
S C R”_). By Proposition 4, the latter subproblem is equivalent to 

Denote by R(s) the subproblem 

J$$ zI sihj(x) (R(s)) 

and let p(s) be the optimal value, and x(s) an optimal solution of R(s). It is 
convenient to use the notation ( . , . ) for inner product. 

COROLLARY 1. Zf (to, s) - p(s) s 1 f or all s E -V then t is a global optimal 
solution of (Q). 

Suppose now that, for some s”E -V, we have 

(t”,S”)--(F)>l. (3) 

Let Z= x(f) and t”= h(C) (so t”E fi and (t”, s”) = ,u(s”)). If f(F) > f(t) then we have 
obtained a better feasible solution than the current best < Otherwise, f(F) C f(i), 
compute 

e=sup{h: f(t”+/q- t”))<r}. (4) 

Note that 8 3 1 because f(t”) < y while f(L) G y. 

PROPOSITION 6. The cut 

(t”- to, t) s ; (5) 

excludes v” = -s” from S without excluding any point of C*. 
Proof. Since (t”, s”) = p(F) it follows from (3) that (t”- to, -s”) = (to, s”) - 

p(F) > 1; i.e., --s”violates the inequality (5). On the other hand, since from the 
definition of B (see (4)), 6(t - t”) E C, it follows that any point t E C* satisfies (5). 

0 
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Thus, the polytope S’, formed by applying the cut (5) to S, given by 

S’=Sfl t: (i-t”,t)+ ) I I 
does not contain -s” but still contains C”. Consequently, the procedure can be 
repeated from S’ in place of S. 

To start, we need a polytope S, > C”. This polytope can be constructed, for 
example, as follows. 

Let e = (1,. . . , 1) be a vector of ones in R”. Since 0 E intC one can always 
select cy > 0 small enough such that -(me E C. 

PROPOSITION 7. C” c S, = {TV R: : -C;=1 tj cr t}. 
Proof. We have (C*)” = C (see [6]). Hence --eye E C implies (-ae, t) < 1 for 

all t E C*; i.e., -(Y Cy=r tj<l for all tE C*. 0 

Thus, starting with S,, we can build a sequence of nested polytopes in R1 

s, 3 s, 3 . . .I Sk 3 . . .I c* 

such that, for each k, either S, C D” (then the current best i is a global optimum), 
or at least one sk E -S, has ( tO, s”) - p(sk) > 1. It may be that tk = /~(.a($~)) is 
better than t (subproblem (Q, i) has now been solved and we can proceed to 
(Q, ?) with t1 q 1 e ua to the just found tk). Otherwise, tk generates a cut which, 
adjoined to Sk, determines Sk+r . It turns out that if we always choose sk E 
argmax,,-Vk{ ( to, s) - p(s)} then convergence of the procedure is guaranteed. 

In practice we combine (6, t”), (0, t’), . . . , into a unified process. Then we 
have the following: 

ALGORITHM 

Initialization 

Let i be the best available feasible solution of problem (Q). Take a feasible 
solution to such that f(f) <f(t) (preferably a t” substantially worse than ? because 
we want t” to lie sufficiently far from the boundary of the set c). Set ?r = V, (set 
ofverticesofinitialS,)={-ke’:i=l,...,n}. Setk=l. 

Iteration k = 1,2, . . . 
Step 1. For each s E -V, solve R(s) to obtain the optimal value p(s) and 

optimal solution x(s). 
Step 2. If max{ ( to, 3) - p(s): s E -V,} 6 1, then terminate: t is the global 

optimal solution of (6). 
Step 3. Select sk E argmax{ ( to, s) - p(s) : s E -V,}. Let xk = x(sk), tk = h(xk). 
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If f(tk) > f(t) then reset t+- tk (otherwise t is unchanged). Compute 

0, = sup{ A : f(t” + /qtk - t”)) Gf(t)} 

and define 

s k+l=Skn t: (tk-to,t)+ . 
k > 

Step 4. Compute the vertex set V,,, of S,,, (knowing already the vertex set V, 
of Sk). Set V,+, = V,+,\V,. Go to iteration k + 1. 

4. Convergence 

Define a function g : R”-+ [0, a] by setting for each u E R”. 

g(u)=sup{(u, t):tED}. 

Obviously g(u) is a convex function and D” = {u : g(u) G l}. 

LEMMA 1. For every k, tk - to E ag(-sk). 
Proof. Let u k = -sk. Clearly 

g(u”) = (to, Sk) - p(sk) = (P, Sk) - (t”, Sk) = ( tk - t”, u”) . (6) 

Hence, g(u) - g(u”) = g(u) - (tk - t”, u”} & (u, tk - t”) - (ti - t”, u”) = 
(tk-f,U-uk). q 

LEMMA 2. Any cluster point of the sequence uk = -sk belongs to D*. 
Proof. Denote Ik(u) = (t” - t”, u). Now consider the set D*, the sequence 

{u”} , and the sequence of affine functions Zk(u). We have (see (6)) 

lk(Uk) = ( tk - to, u”) = g(u”) > 1 , 

while 

for all u E D*. That is, each Zk(. ) strictly separates uk from D *. Since the 
sequence {u”} is bounded (contained in S,) and tk - to E dg(uk) by Lemma 1, it 
follows from well known results in outer approximation methods (see, e.g., [4]) 
that any cluster point G of {u”} will belong to D *. 0 

Denote by t” the current best solution in iteration k. 

THEOREM. Either the algorithm terminates after finitely many iterations yielding 
a global optimal solution, or it generates an infinite sequence {t”} every cluster 
point of which is a global optimal solution. 

Proof. Suppose the algorithm is infinite. We will show that in fact any cluster 
point t^ of sequence { fk} is a global optimal solution. Let t^ = limV+_fku. Without 
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loss of generality, we can assume uku+ 0. Since, by Lemma 2, ti E D* it follows 
that g(G) < 1. Let Ck = {t : f(t) G f(t”)}, C, = C, - t’. Then 

g(u”) = max{ g(u) : u E V,} = max{ g(u) : u E Sk} 2 max{ g(u) : u E C:) 

since Sk > Cz by Proposition 6. But g(ukU) 6 g(c) s 1. Therefore, 

max 
L 

g(u): u E fi C1 G 1 
V=l I 

which implies that fl r=, Cl” C D*, 
u;=, q. 

and consequently, Uz=, C, > D. Thus, fi C 
That is, for any t E 6, there exists a k, such that t E Ck,; hence 

f(t) == fCku) =s m P roving the global optimality of t^. 

5. Discussion 

(i) If P, denotes the polar of the polytope Sk then 

P, c P2 c . . . c P, c . . . 

That is, the method amounts to building a sequence of expanding polyhedra all 
contained in the convex set C = {t : f(t + t”) d r,,,}, where yopt = min f(D), and 
eventually covering all of D, whence the name polyhedral annexation. 

Every subproblem R(s) is an unconstrained convex minimization problem 
which can be solved by efficient standard methods. If the functions h,(x) are 
polyhedral (as assumed in [5]), then each R(s) seeks to minimize a convex 
piecewise affine function over R”. Recall that m = 2 for the practical problem 
considered in [5]. 

We assume that two feasible solutions to and tare available at the beginning 
with f(t”) <f(t). This assumption is innocuous here since for any x the vector 
t = h(x) is a feasible solution. 

Each polytope Sk+l is obtained from its predecessor Sk by adjoining a new 
linear constraint. Therefore, V,,, can be derived from V, using, e.g., the 
procedure of either Horst et al. [3] or [l]. If at some iteration k the set V, 
becomes too large, then it is possible to restart, with the current best solution Fk 
as the starting i Thus, the growth of V, may create difficulty for this method, as 
for similar methods of concave minimization. Based on the reported numerical 
experience in [3], [l] our method should be practical for values of n up to 20 on a 
microcomputer. 

The problems R(s) need not necessarily be solved to optimality. It is possible to 
develop an “approximate” variant of the Algorithm where each R(s) can be 
solved to within some accuracy (but then the output of the Algorithm is an 
approximate global solution). 

Also, it is clear that the method can be applied to nonconvex functions h if the 
unconstrained global minimization of these functions can be done efficiently 
(indeed, the convexity of fi is immaterial). 
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(ii) Each problem R(s) is a Fermat-Weber problem where the distance from x 
to district j is sjhj(x). Thus our approach amounts to solving a sequence of 
Fermat-Weber problems depending upon a parameter s E R: (sj is a “weight” 
assigned to district j) that is gradually adjusted till global optimality. 

Whenm=2andeveryhi(-x),j=1,..., n, is given by a polyhedral norm, then 
h,(x) is affine over each of the cones vertexed at aj and generated by a facet of the 
“unit ball” associated with this norm. Therefore, the function Cy=r sjhj(x), for 
given s E R: , is affine over each polyhedron of the form fl y=r M, , where M, is a 
cone of the type just described in which h,(x) is affine. That is, the objective 
function of the subproblem R(s) is a convex, piecewise affine function, with the 
affine pieces having domains given by the elementary polyhedra discussed in the 
Introduction. It follows that an optimal solution of a subproblem R(s), and hence 
a global optimal solution of problem (P), is achieved at a vertex of an elementary 
polyhedron, i.e., an intersection point in accordance with the result established in 
[51. 

6. Extensions 

A more general (and more difficult) problem than the one considered above 
occurs when two (or more) facilities have to be constructed (located). In this case, 
each district j will be served by the nearest facility, so the problem is to determine 
the locations, say x and y, of the facilities so as to maximize 

,$ qj[‘jCxs Y)l over (x, y) E R’ x R2 , 

where 

‘j(x> Y) = min{h,W hj(Y>> (7) 

and qj(t), hi(x) are functions satisfying the same assumptions (Al), (A2) as 
previously. Setting z = (x, y), we see that this problem is of the same type as (P), 
except that h;(x, y) is no longer convex. However, as can easily be checked, the 
same method as above can be applied, with the subproblems R(s) now being 

min 2 S.&.(x, y) 
(x.y)~R*xR~,=l I I 

(8) 

Since h;(x, y) = [hi(x) + hi(y)] - max{hj(x), h,(y)} is a difference of two convex 
functions (a d.c. function), then problem (8) is an unconstrained d.c. optimization 
problem, equivalent to 

min[ u -,$ Sj max{hj(x), hj(.Y)>] 

s.t. ,lJ sj(hj(x) + h,(Y)) d ’ 

x,yER’, Oc-u~L 

(9) 
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where L is a sufficiently large positive number. The latter problem (which is a 
concave minimization problem over a compact convex set in R2 X R2 x R,) can 
be solved practically by currently available algorithms (see [4]). 

If h,(x) is associated with a polyhedral norm then, since h,(x) is affine on each 
elementary polyhedron, it follows from (7) that ij(.x, y) is concave on each 
polyhedron in R2 x R2 which is the product of two elementary polyhedra in R2. 
Therefore, an optimal solution of R(s) is of the form (x(s), y(s)) where x(s) and 
y(s) are intersection points. 

A case of interest is when the location y of one facility has already been fixed. 
Then the problem is the same as that which would arise if an old facility already 
exists and we want to construct a new facility at the optimal location. Obviously, 
problem (P) can be considered as a special case of a problem of this form, where 
y is taken to be infinitely far away from the origin. 
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